Customer Service:
Mon - Fri: 8:30 am - 6 pm EST

Ceramic

Ceramic particle testing standards are published by ISO, ASTM, and BS. ISO standards cover aspects of fine ceramics testing, from sample preparation to determination of particle content using methods such as laser diffraction, wet sieving, and pycnometer to determine particle size, content, and absolute density. ASTM publishes standards on other standard test methods such as flow button methods, wet sieve analysis, and test methods for equibiaxial strength, slow crack growth, tensile strength, compressive strength, fracture toughness, cyclic fatigue, and creep strain. BS publishes standards on advanced technical ceramics tests on fracture toughness and particle size determination. Because there are a variety of applications that ceramics can be used for, it is important for your organization to be equipped with the knowledge to determine if the physical properties of a ceramic fits the requirements of the application.


ISO 14703:2008

Fine ceramics (advanced ceramics, advanced technical ceramics) - Sample preparation for the determination of particle size distribution of ceramic powders

ISO 14703:2008 specifies a general wet-sample preparation technique common to the size analysis of powdered fine ceramic materials. The analyzed size distribution of fine particles is strongly dependent on the sample preparation.


ISO 24235:2007

Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of particle size distribution of ceramic powders by laser diffraction method

ISO 24235:2007 specifies a laser diffraction method for measuring particle size distributions, by means of the detection of angular distributions of the intensity of light scattered by fine-ceramic raw powders dispersed in a liquid phase irradiated by a laser beam.


ISO 24369:2005

Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of content of coarse particles in ceramic powders by wet sieving method

ISO 24369:2005 specifies the procedure to determine the content of coarse particles in a fine ceramic powder and/or in a fine ceramic suspension using an aqueous-based wet sieving method.


ISO 18753:2017

Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of absolute density of ceramic powders by pycnometer

ISO 18753:2017 specifies a method for determining the absolute particle density of fine ceramic powders or sintered parts using liquid pycnometry. NOTE Other pycnometer methods like gas pycnometers (e.g. helium pycnometer), where a gas is used as media, also exist.


ASTM C374-14(2018)

Standard Test Methods for Fusion Flow of Porcelain Enamel Frits (Flow-Button Methods)

1.1 These test methods cover evaluation of the relative fusion flow characteristics of samples of a given porcelain enamel frit by comparison with an established standard for that frit. 1.2 Two test methods are included, differing only in certain details of the samples and in the apparatus and procedure for preparation of test specimens. Both test methods give equally reproducible results and provide a satisfactory basis for comparison of fusion flow of the sample with that of the established standard. 1.2.1 Test Method A employs granular particles of frit to which a bonding agent has been added. Button specimens are formed under high pressure in a hydraulic press. 1.2.2 Test Method B employs crushed, sized particles of frit to which a bonding agent has been added. Button specimens are formed in a steel mold by hand. 1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C925-09(2019)

Standard Guide for Precision Electroformed Wet Sieve Analysis of Nonplastic Ceramic Powders

1.1 This guide covers the determination of the particle size distribution of pulverized alumina and quartz for particle sizes from 45 to 5 m by wet sieving. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.2.1 The only exception is in the Section 5 , Apparatus, 5.1 where there is no relevant SI equivalent. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C371-09(2018)

Standard Test Method for Wire-Cloth Sieve Analysis of Nonplastic Ceramic Powders

1.1 This test method covers the determination of the particle size distribution of nonplastic ceramic powders such as alumina, silica, feldspar, pyrophyllite, nepheline syenite, talc, titanates, and zircon using wire cloth sieves. 1.2 Materials containing a large amount of fines, containing agglomerates, or that are nonfree-flowing, are wet-sieved to remove excessive fines or to disperse agglomerates before performing the test. This technique is not applicable to materials that are, to any degree, water soluble. 1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units, or are other customary units (in the case of sieve frame diameter and sieve number), that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1499-19

Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature

1.1 This test method covers the determination of the equibiaxial strength of advanced ceramics at ambient temperature via concentric ring configurations under monotonic uniaxial loading. In addition, test specimen fabrication methods, testing modes, testing rates, allowable deflection, and data collection and reporting procedures are addressed. Two types of test specimens are considered: machined test specimens and as-fired test specimens exhibiting a limited degree of warpage. Strength as used in this test method refers to the maximum strength obtained under monotonic application of load. Monotonic loading refers to a test conducted at a constant rate in a continuous fashion, with no reversals from test initiation to final fracture. 1.2 This test method is intended primarily for use with advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method is intended for use on monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fiber-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites do not macroscopically exhibit isotropic, homogeneous, continuous behavior, and the application of this test method to these materials is not recommended. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1465-08(2019)

Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures

1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress-rate flexural testing in which flexural strength is determined as a function of applied stress rate in a given environment at elevated temperatures. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material. Note 1: This test method is frequently referred to as dynamic fatigue testing ( 1- 3 ) 2 in which the term fatigue is used interchangeably with the term slow crack growth. To avoid possible confusion with the fatigue phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823 , this test method uses the term constant stress-rate testing rather than dynamic fatigue testing. Note 2: In glass and ceramics technology, static tests of considerable duration are called static fatigue tests, a type of test designated as stress-rupture (Terminology E1823 ). 1.2 This test method is intended primarily to be used for negligible creep of test specimens, with specific limits on creep imposed in this test method. 1.3 This test method applies primarily to advanced ceramics that are macroscopically homogeneous and isotropic. This test method may also be applied to certain whisker- or particle-reinforced ceramics that exhibit macroscopically homogeneous behavior. 1.4 This test method is intended for use with various test environments such as air, vacuum, inert, and any other gaseous environments. 1.5 Values expressed in this standard test are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 . 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1366-19

Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Elevated Temperatures

1.1 This test method covers the determination of tensile strength under uniaxial loading of monolithic advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under uniaxial loading. 1.2 This test method applies primarily to advanced ceramics which macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics as well as certain discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this test method to these materials is not recommended. 1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1424-15(2019)

Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature

1.1 This test method covers the determination of compressive strength including stress-strain behavior, under monotonic uniaxial loading of advanced ceramics at ambient temperature. This test method is restricted to specific test specimen geometries. In addition, test specimen fabrication methods, testing modes (force or displacement), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Compressive strength as used in this test method refers to the compressive strength obtained under monotonic uniaxial loading. Monotonic loading refers to a test conducted at a constant rate in a continuous fashion, with no reversals from test initiation to final fracture. 1.2 This test method is intended primarily for use with advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method is intended for use on monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fiber-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and, application of this test method to these materials is not recommended. 1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1421-18

Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature

1.1 These test methods cover the fracture toughness, K Ic , determination of advanced ceramics at ambient temperature. The methods determine K Ipb (precracked beam test specimen), K Isc (surface crack in flexure), and K Ivb (chevron-notched beam test specimen). The fracture toughness values are determined using beam test specimens with a sharp crack. The crack is either a straight-through crack formed via bridge flexure (pb), or a semi-elliptical surface crack formed via Knoop indentation (sc), or it is formed and propagated in a chevron notch (vb), as shown in Fig. 1 . 1.6 Values expressed in these test methods are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 . 1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1361-10(2019)

Standard Practice for Constant-Amplitude, Axial, Tension-Tension Cyclic Fatigue of Advanced Ceramics at Ambient Temperatures

1.1 This practice covers the determination of constant-amplitude, axial, tension-tension cyclic fatigue behavior and performance of advanced ceramics at ambient temperatures to establish baseline cyclic fatigue performance. This practice builds on experience and existing standards in tensile testing advanced ceramics at ambient temperatures and addresses various suggested test specimen geometries, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states). 1.2 This practice applies primarily to advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this practice applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fibre-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fibre-reinforced ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this practice to these materials is not recommended. 1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1291-18

Standard Test Method for Elevated Temperature Tensile Creep Strain, Creep Strain Rate, and Creep Time to Failure for Monolithic Advanced Ceramics

1.1 This test method covers the determination of tensile creep strain, creep strain rate, and creep time to failure for advanced monolithic ceramics at elevated temperatures, typically between 1073 and 2073 K. A variety of test specimen geometries are included. The creep strain at a fixed temperature is evaluated from direct measurements of the gage length extension over the time of the test. The minimum creep strain rate, which may be invariant with time, is evaluated as a function of temperature and applied stress. Creep time to failure is also included in this test method. 1.2 This test method is for use with advanced ceramics that behave as macroscopically isotropic, homogeneous, continuous materials. While this test method is intended for use on monolithic ceramics, whisker- or particle-reinforced composite ceramics as well as low-volume-fraction discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Continuous fiber-reinforced ceramic composites (CFCCs) do not behave as macroscopically isotropic, homogeneous, continuous materials, and application of this test method to these materials is not recommended. 1.3 The values in SI units are to be regarded as the standard (see IEEE/ASTM SI 10 ). The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


ASTM C1273-18

Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures

1.1 This test method covers the determination of tensile strength under uniaxial loading of monolithic advanced ceramics at ambient temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Note that tensile strength as used in this test method refers to the tensile strength obtained under uniaxial loading. 1.2 This test method applies primarily to advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics as well as certain discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this practice to these materials is not recommended. 1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10 . 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7 . 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


BS EN 14425-3:2010

Advanced technical ceramics. Test methods for determination of fracture toughness of monolithic ceramics. Chevron notched beam (CNB) method (British Standard)

This European Standard provides a test method for fracture toughness determination based on the chevron-notch method. For the purposes of this European Standard, the term monolithic includes particle and whisker reinforced advanced technical ceramics which can be regarded as macroscopically homogeneous. It does not include long-fibre reinforced ceramics.


BS EN 725-5:2007

Advanced technical ceramics. Methods of test for ceramic powders. Determination of particle size distribution (British Standard)

This Part of EN 725 describes the preparation of suspensions and calibration of apparatus, prior to the measurement of particle size distribution of powders used for advanced technical ceramics. The preparation described is appropriate for measurements either by the sedimentation method or the laser light scattering method.


ANSI Logo

As the voice of the U.S. standards and conformity assessment system, the American National Standards Institute (ANSI) empowers its members and constituents to strengthen the U.S. marketplace position in the global economy while helping to assure the safety and health of consumers and the protection of the environment.

CUSTOMER SERVICE
NEW YORK OFFICE
ANSI HEADQUARTERS